

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
* 1 0 6 8	MATHEMATICS	S (SYLLABUS D)	4024/01
0		(GILLADOG D)	
0	Paper 1		October/November 2007
α ω			2 hours
Ň	Candidates ans	wer on the Question Paper.	
4 υ υ	Additional Mate	rials: Geometrical instruments	
*			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

At the end of the examination, fasten all your work securely together.

For Examiner's Use

This document consists of **16** printed pages.

[Turn over

	2
N	EITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.
1 (a) Express $22\frac{1}{2}$ % as a fraction in its lowest terms.
(b) Evaluate 0.9×0.02 .
	Answer (a)[1]
	(b)[1]
2 Ex	spress as a single fraction in its lowest terms
(a) $3\frac{5}{9} - 2\frac{2}{3}$,
(b) $\frac{3}{8} \div 2\frac{1}{4}$.
	Answer (a)[1]
3 (a	
	(b)[1) Add 620 grams to 3.7 kilograms. Give your answer in kilograms. Answer (a)kg [1]
	(b)[1] Add 620 grams to 3.7 kilograms. Give your answer in kilograms. Answer (a)kg [1] Write the following numbers in order of size, starting with the smallest.
	Give your answer in kilograms. Answer (a)kg [1]

4 In the diagram, the circle, centre <i>O</i> , passes through <i>A</i> , <i>B</i> and <i>C</i> . AC is a diameter of the circle and the line <i>TAS</i> is the tangent at <i>A</i> . $\angle ACB = 34^\circ, 7A = 3 \text{ cm}$ and $TC = 5 \text{ cm}$. (a) Find $\angle BAC$. (b) Calculate the radius of the circle. $Answer (a) \angle BAC = \dots [1]$ (b) $\dots (n]$ (c) $\square (n]$ (c) Find the simple interest on \$450 for 18 months at 4% per year. (a) find $(a) f(-9)$, (b) f ⁻¹ (x). $Answer (a) \dots (n]$ (c) $\square (n]$			3
Answer (a) $\angle BAC = \dots $	4	through <i>A</i> , <i>B</i> and <i>C</i> . <i>AC</i> is a diameter of the circle and the line <i>TAS</i> is the tangent at <i>A</i> . $\angle ACB = 34^\circ$, <i>TA</i> = 3 cm and <i>TC</i> = 5 cm. (a) Find $\angle BAC$.	5 0 34° B
5 (a) The rate of exchange between dollars and euros was \$0.8 to 1 euro. Calculate the number of euros received in exchange for \$300. (b) Find the simple interest on \$450 for 18 months at 4% per year. (b) Find the simple interest on \$450 for 18 months at 4% per year. (c) Find the simple interest on \$450 for 18 months at 4% per year. (c) Find the simple interest on \$450 for 18 months at 4% per year. (c) Find the simple interest on \$450 for 18 months at 4% per year. (c) Find the simple interest on \$450 for 18 months at 4% per year. (c) Find the simple interest on \$450 for 18 months at 4% per year. (c) S			Answer (a) $\angle BAC = \dots [1]$
Calculate the number of euros received in exchange for \$300. (b) Find the simple interest on \$450 for 18 months at 4% per year. (b) Find the simple interest on \$450 for 18 months at 4% per year. [1] (b) \$[1] (b) \$[1] 6 It is given that $f(x) = \frac{3-x}{2}$. Find (a) $f(-9)$, (b) $f^{-1}(x)$. Answer (a)[1]			(b)
(b) Find the simple interest on \$450 for 18 months at 4% per year. Answer (a)	5		
(b) \$[1] 6 It is given that $f(x) = \frac{3-x}{2}$. Find (a) $f(-9)$, (b) $f^{-1}(x)$. Answer (a)[1]		(b) Find the simple interest on \$450 for 1	8 months at 4% per year.
(b) \$[1] 6 It is given that $f(x) = \frac{3-x}{2}$. Find (a) $f(-9)$, (b) $f^{-1}(x)$. Answer (a)[1]			
6 It is given that $f(x) = \frac{3-x}{2}$. Find (a) $f(-9)$, (b) $f^{-1}(x)$. Answer (a)			
Find (a) f(-9), (b) f ⁻¹ (x). Answer (a)[1]			
 (a) f(-9), (b) f⁻¹(x). Answer (a)			
(b) f ⁻¹ (x). Answer (a)[1]	6	It is given that $f(x) = \frac{3-x}{2}$.	
Answer (a)[1]	6	2	
	6	Find	
$(b) f^{-1}(x) - [1]$	6	Find (a) f(-9),	
	6	Find (a) f(-9),	(<i>b</i>) \$[1]

https://xtremepape.rs/

Examiner's Use

7

For

In an experiment, the heights of some plants were measured. The table below summarises the results.

Height (<i>h</i> cm)	$2 < h \leq 3$	$3 < h \le 4$	$4 < h \le 5$	$5 < h \le 8$
Frequency	15	25	20	15

Complete the histogram which represents this information.

4024/01/O/N/07

				6							
11	The mass of a marble is given as 5.4 grams, correct to the nearest tenth of a gram. The mass of a box is given as 85 grams, correct to the nearest 5 grams.										
	(a)	Complete the table in	the answer s	pace.							
	(b)	Find the lower bound	for the total	mass of the l	box and 20	identical ma	rbles.				
				Answei	r (a)						
						Lower bound	Upper bound				
					Mass of 1 marble	g	g				
					Mass of the box	g	g				
					(b)		£				
12	(a)	When an object is fall At a certain speed, the What is the resistance	e resistance is	s 30 newtons	ies as the so						
12		At a certain speed, the	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed?	ies as the so	quare of the					
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed? he value of y	ties as the solution $x = 3$	quare of the s	speed.				
12		At a certain speed, the What is the resistance y is inversely proportio	e resistance is at twice this onal to <i>x</i> .	s 30 newtons speed? he value of y	ties as the solution $x = 3$ when $x = 3$	quare of the	speed.				

https://xtremepape.rs/

For Examiner's Use

15

A farmer wishes to build a rectangular enclosure against a straight wall. He has 39 identical fence panels, each 1 metre long. One possible arrangement, which encloses an area of 70 m^2 , is shown in the diagram and recorded in the table below.

Find the length of the enclosure which would contain the largest area. Write down this length and the largest area.

Record all your trials in the table.

Marks will be awarded for clear, appropriate working.

Width (m)	2		
Length (m)	35		
Area (m ²)	70		

Answer Length =	m
-----------------	---

Area = m^2 [3]

3x + 2y = 17.

9

For Examiner's Use

10

In the diagram, *ABCD* is part of a regular polygon. Each interior angle is 165° .

- (a) How many sides does this polygon have?
- (b) *ABPQ* is part of another regular polygon. This polygon has 12 sides. Calculate *x*.

Answer	(<i>a</i>)		[2]	
--------	--------------	--	-----	--

(*b*) x =[2]

https://xtremepape.rs/

18

		11
19	(a)	Estimate the value, correct to one significant figure, of $\frac{4.03^2 \times 29.88}{\sqrt{150}}$.
		Answer (a)[2]
	(b)	Sam ran 100 metres in 12 seconds. Calculate his average speed in kilometres per hour.
		Answer (b) km/h [2]
20	Fact	torise completely
	(a)	$15a^2 + 12a^3$,
	(b)	$1 - 16b^2$,
	(c)	6cx - 3cy - 2dx + dy.
		Answer (a)[1] (b)[1]

23

The foot of a mountain is at sea level. The temperature at the foot of the mountain was 16° C. The temperature at a height of 3000 m on the mountain was -4° C.

- (a) Find the difference between these temperatures.
- (b) Given that the temperature fell at a constant rate, find
 - (i) the temperature at a height of 1800 m,
 - (ii) the height at which the temperature was 0° C,
 - (iii) an expression, in terms of x, for the temperature, in $^{\circ}$ C, at a height of x metres.

- Answer (a)°C [1] (b)(i)°C [1] (ii) m [1]
 - (iii)[2]

For Examiner's					15				
Use	24	A series of di The triangles				is shown be	low.		
		Dia	gram 1 D	iagram 2	Diagram		Diagram 4		
		The table belo	-	C	C		C	grams.	
		Diagram	1	2	3	4		n	
	G	rey triangles	2	4	6			x	

Diagram	1	<u> </u>	5	+	n
Grey triangles	2	4	6		x
White triangles	1	4	9		у
Black triangles	0	2	6		Z.

- Complete the column for Diagram 4. **(a)**
- (b) By considering the number patterns in the table, find, in terms of *n*, expressions for *x*, *y* and *z*.

Answer (b) x = *y* = *z* =[4] For

Examiner's Use

[1]

The diagram at the bottom of the page shows a triangle ABC. 25 (a) By measuring an angle, find reflex angle ACB. Answer (a)[1] (b) The point D is on the opposite side of AC to B. AD = 6 cm and CD = 9 cm.Construct triangle ACD. (c) On the diagram, construct the locus of points, **inside** the quadrilateral ABCD, which are Ι equidistant from A and C, Π 5 cm from the line AB. (d) The point *P* is inside quadrilateral ABCD, equidistant from A and C, 5 cm from the line AB. Mark and label the position of *P*. (i) (ii) Measure CP. Answer (b)(c)(d)(i)CВ [3] Answer $(d)(ii) CP = \dots cm [1]$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© UCLES 2007 4024/01/O/N/07

For

Examiner's

Use